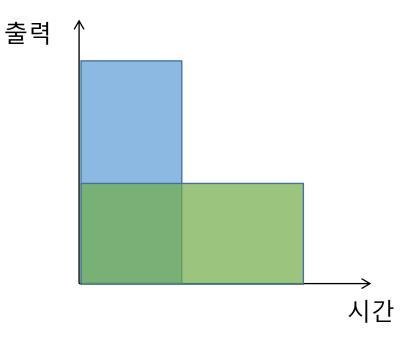


유연성 자원별 계통 기여도

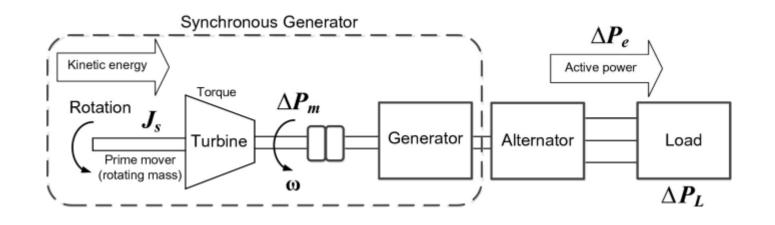
광운대 전력에너지연구실 2024.04.25

- 1. 관성, 예비력, 주파수 안정도 개요
- 2. 2036년 춘계 주간 및 재생에너지 최대 케이스 검토
- 3. 2030, 2036 최저관성 시나리오 필요 유연성자원량 검토
- 4. 유연성자원 조합에 따른 경제성 비교
- 5. 토론



- 관성(Inertia)
 - ✓ 개별 터빈 발전기에서 회전 질량의 운동 에너지에 의해 제공되는저항으로 인해 주파수의 변화에 반대하는 시스템의 능력

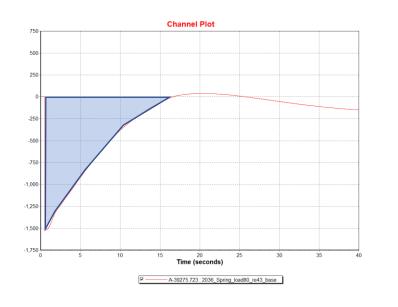
$$E_{k,sys} = S_{n,sys}H_{sys} = \sum_{i=1}^{N} S_{ni}H_i$$
 [MWs]

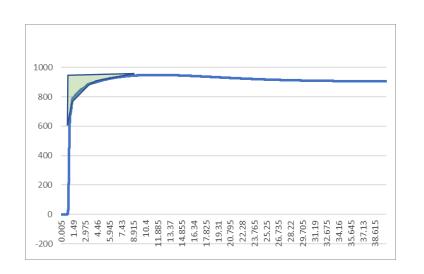

- 관성상수(H)
 - ✓ 발전기의 회전 에너지가 정격 피상 전력과 동일한 부하를 공급할 수있는 시간

$$H = \frac{1J\omega_{\rm n}^2}{2S_{\rm n}} [s]$$

- 계통 동요 방정식(Swing Equation)
 - ✓ 초기 df/dt (RoCoF)는 계통의 관성에 반비례 (P 조건 동일 시)
 - ✓ 초기 df/dt (RoCoF)는 ΔP (탈락 발전량) 비율에 비례 (H 조건 동일 시)

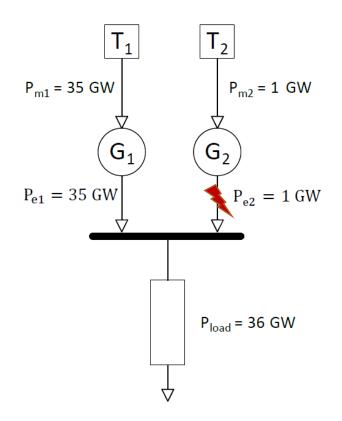
$$p_m(t) - p_e(t) = 2 \cdot H \cdot \frac{d\omega}{dt}$$

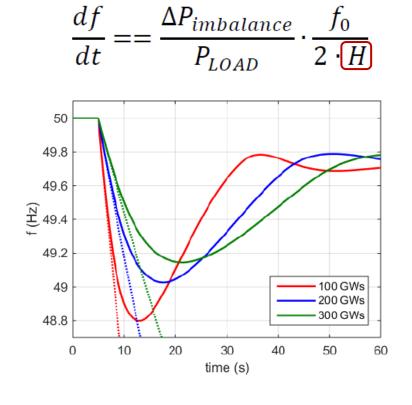

$$\frac{df}{dt} = = \frac{\Delta P_{imbalance}}{P_{LOAD}} \cdot \frac{f_0}{2 \cdot H}$$

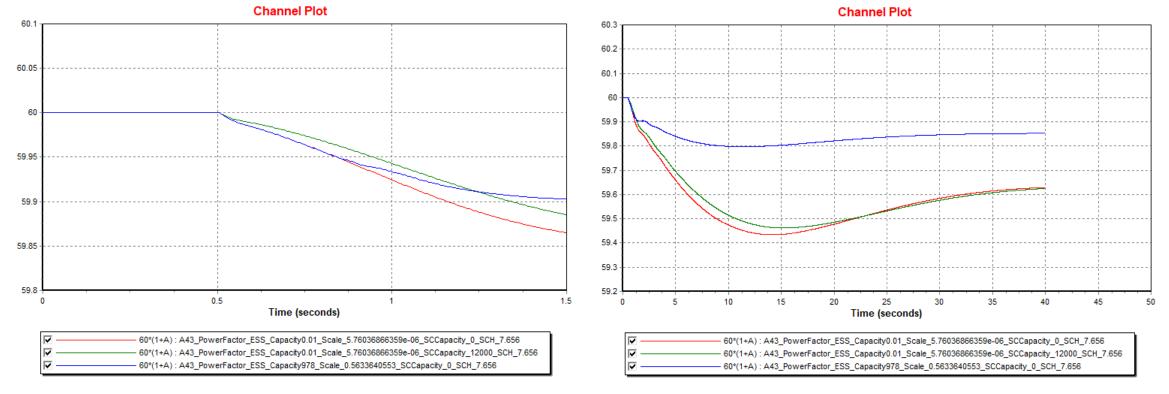


- 주파수 변화량
 - ✓ t_0 (발전기 탈락) 이후 특정 시간 t 의 주파수의 변화량은 유효전력 차의 적분량에 비례
 - ✓ 초속응성 자원(ESS) 와 같은 빠른 전력보상 자원이 있을 경우 ΔP 및 Δf 는 빠르게 감소

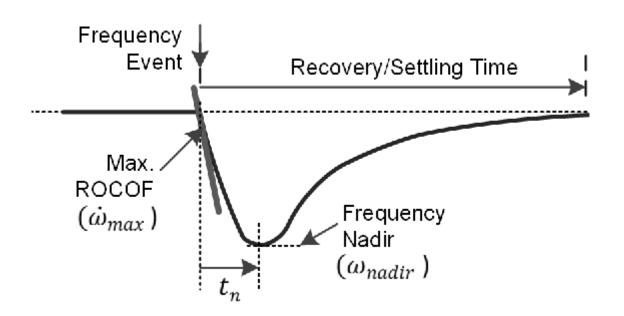
$$\Delta f = \frac{1}{H \cdot P_{LOAD}} \cdot \frac{f_0}{2} \int_{t_0}^{t} \Delta P_{imbalance} \cdot dt$$


VS




- ENTSO-e Future System Inertia Report
 - ✓ 국내계통으로 비교 시 105GW 부하 조건의 3GW 탈락 케이스, GF (5% droop)
 - ✓ 초기 RoCoF 는 관성에 반비례하지만 최저주파수는 관성과 선형 관계가 아님

- 관성 RoCoF, 속응예비력 주파수 nadir
 - 빨강 = 춘계주간 Base, 관성 250 GVAs
 - 파랑 = 춘계주간 Base + ESS 978 MW, 관성 250 GVAs
 - 초록 = 춘계주간 Base + SC 12 GVAR(H 7.656), 관성 342 GVAs
- ✓ 관성 = RoCoF 감소 및 nadir 소폭 완화
- ✓ 속응성 예비력 = nadir 대폭 완화



• 최저주파수 기준

전력계통 신뢰도 및 전기품질 유지기준

N-1:59.7 Hz

N-2:59.2 Hz

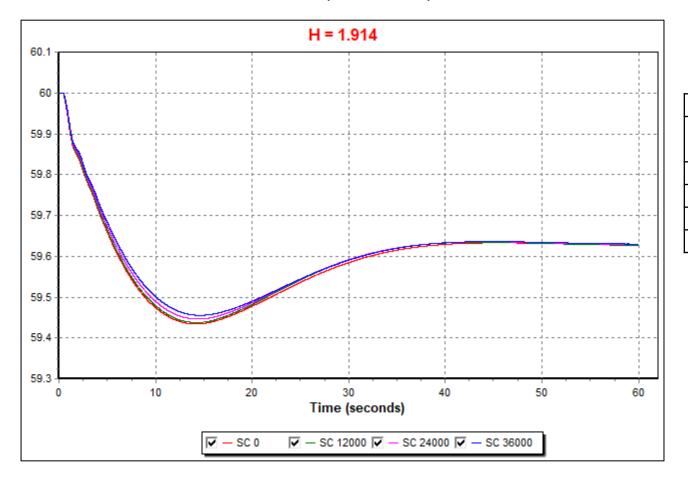
• RoCoF 기준

외란 발생 후 0~0.5s 최대 RoCoF 기준

기관	기준(Hz/s)
ENTSO-e	2.0
ERCOT	≒ 1.0
Eirgrid (Ireland)	1.0
ENA (UK)	1.0
IEEE 1547 FRT	Cat 1 : 0.5 Cat 2 : 2.0 Cat 3 : 3.0

• 국내 예비력 기준

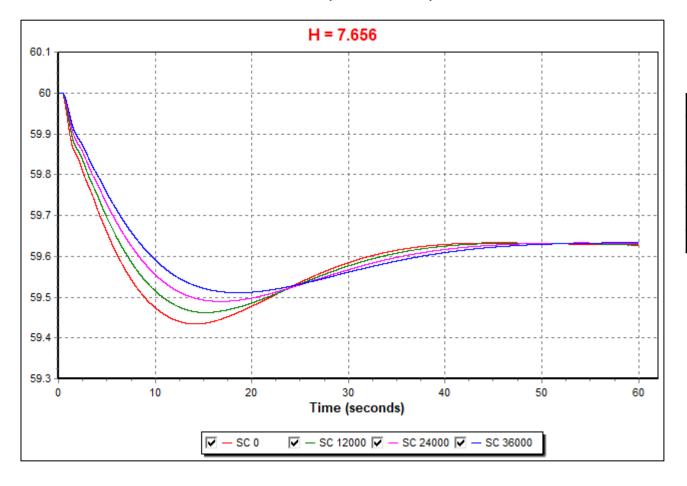
		항 목	확보량(MW)	확보수단	성능	·요건	
0	평상시	주파수제어예비력	700 이상	자동(AGC+ESS)	5분 이내	30분 유지	
운영전	예 고장시	1차예비력	1,000 이상	자동(GF+ESS)	10초 이내	5분 유지	
		2차예비력	1,400 이상	자동(AGC)	10분 이내	30분 유지	
7		3차예비력	1,400 이상	자동+수동	30분 이내	-	
	속	응성자원	2,000 이상	수동	20분 이내	4시간 유지	
TOTAL			6,500 이상				



			신재생		기존 발전					
	부하	태양광	풍력	기타	원전	동기기 및 기타	예비력			
총 용량(설비용량) (GW)	118.0	61.8	33.2	9.7						
비율	68.2%	47.8%	21.4%	64.5%						
용량	80.5	29.5	7.1	6.3	25.7	13.3	1.7 (pf 1.0)			
재생에너지 합계				42.9						

• 계통관성 : 250GWs

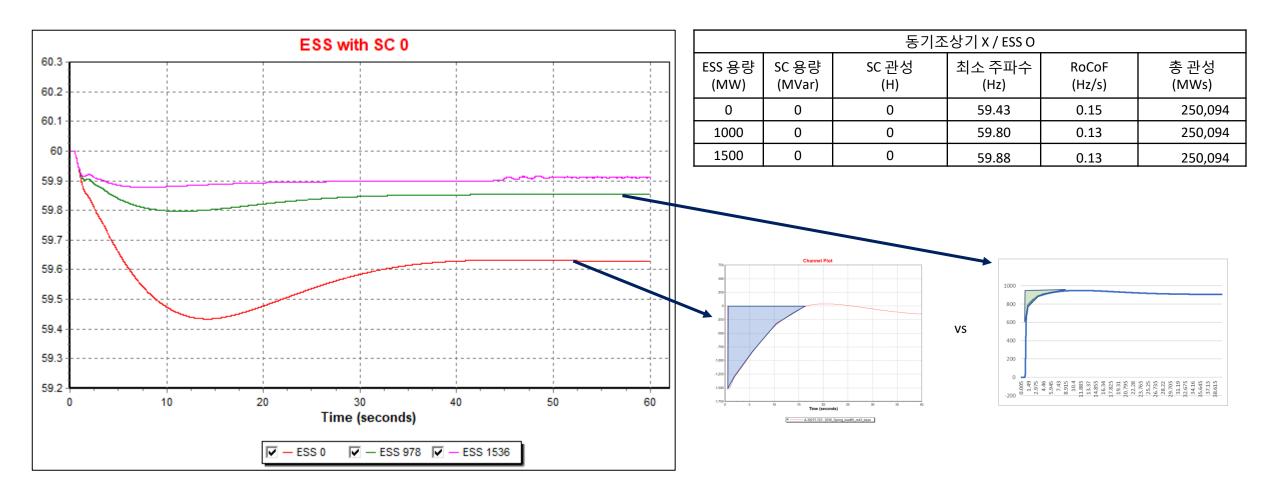
- 동기조상기 36 GVar (H 1.914) 투입 시
 - ✓ 관성 250 GWs -> 320 GWs (28% 증가)
 - ✓ RoCoF 0.15 -> 0.12 (20% 감소)



✓ 최저주파수 0.03 Hz 향상

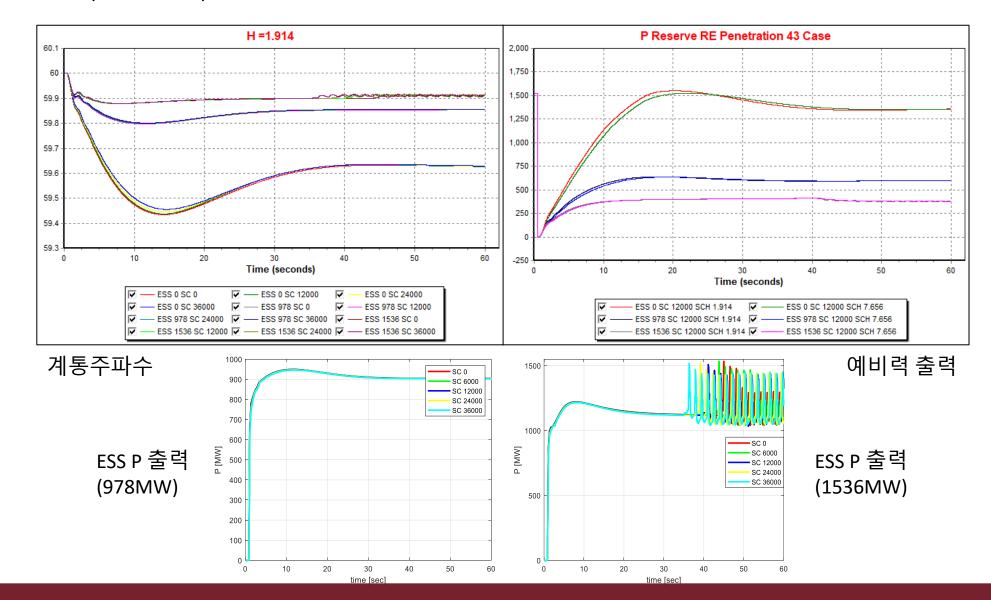
	동기조상기 O(관성 1.914) / ESS X											
ESS 용량 (MW)	SC 용량 (MVar)	SC 관성 (H)	최소 주파수 (Hz)	총 관성 (MVAs)								
0	0	1.914	59.43	0.151	250,094							
0	12000	1.914	59.44	0.141	273,181							
0	24000	1.914	59.45	0.131	296,268							
0	36000	1.914	59.46	0.122	319,354							

- 동기조상기 36 GVar (H 7.656, FSC) 투입 시
 - ✓ 관성 250 GWs -> 527 GWs (108% 증가)
 - ✓ RoCoF 0.15 -> 0.08 (47% 감소)



✓ 최저주파수 0.08 Hz 향상

	동기조상기 O(관성 1.914) / ESS X												
ESS 용량 (MW)	SC 용량 (MVar)	SC 관성 (H)	최소 주파수 (Hz)	RoCoF (Hz/s)	총 관성 (MVAs)								
0	0	7.656	59.43	0.15	250,094								
0	12000	7.656	59.46	0.11	342,441								
0	24000	7.656	59.49	0.09	434,788								
0	36000	7.656	59.51	0.08	527,134								


- ESS 투입 시
 - ✓ 관성에 영향 없으나 최저 주파수 대폭 향상

관성자원 투입에 따른 주파수 안정도 변화

• 종합 비교 (H 1.914 SC)

유연성자원 보강 계획

• 10차 전력수급기본계획 - 단, 중, 장기 유연성자원 보강 계획

	구분		단기(4년)			중기(4년)			장기(6년)							
	E			'24	'25	'26	'27	'28	'29	'30	'31	'32	'33	'34	'35	'36
기준	20			21			22									
별도 제시	초단 주기	동기조상기* (GVar)	필	필요물량 없음				~36 / 10.8 / 6.75			~36 / 10.8 / 6.75					
게시 물량	단주기	'l ESS(GW)	~0.05				~1.16			~3.66						
(누적)	장주기	장주기 ESS(GW)			.16		~3.1				~22.6					

^{* &#}x27;36년까지의 관성 필요량은 **54GWs** 수준이며, 설비 보강(클러치 설치)을 통해 기존 발전기를 동기조상기 모드로 활용 시 36GVar (H 1.5), 용도전환 시 10.8Gvar (H 5), 신규 고관성 기기 설치 시 6.75Gvar (H 8)필요

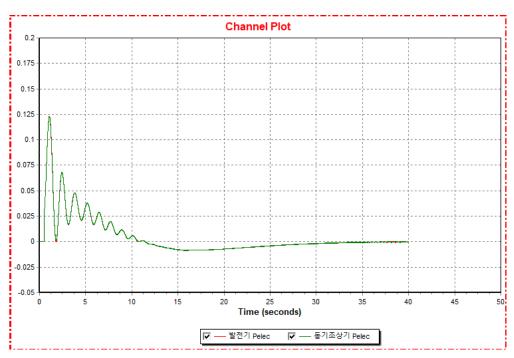
구분	2030	2036
동기조상기	36 / 10.8 / 6.75	36 / 10.8 / 6.75
단주기 ESS	2.1 GW	1.4 GW

결론 및 논의사항

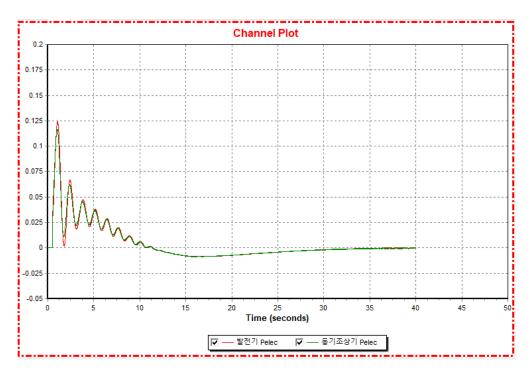
- 임계 관성은 예비력 조건(용량, 속도)에 따라서 변화
- 동일 관성이라도 부하 조건(탈락 발전기 용량 비율)에 따라 주파수 특성 다름
- 유연성자원 중 ESS 자원의 용량, 비용 대비 최저주파수 완화 기여가 큼
- 주파수안정도 검토 기준 미정립에 따른 검토 결과 상이

구분	Strength	Weakness				
계산 기반 (KPX)	속도 빠름 중장기 검토 용이	선형 계산 부정확도 이상적 계통 조건				
시뮬레이션 기반 (KEPCO)	특수설비 제어 반영	안정화 문제 DB 구축 및 시뮬레이션 시간 소요				

• 중장기 주파수안정도 및 유연성자원 보강 검토 툴 개발 필요



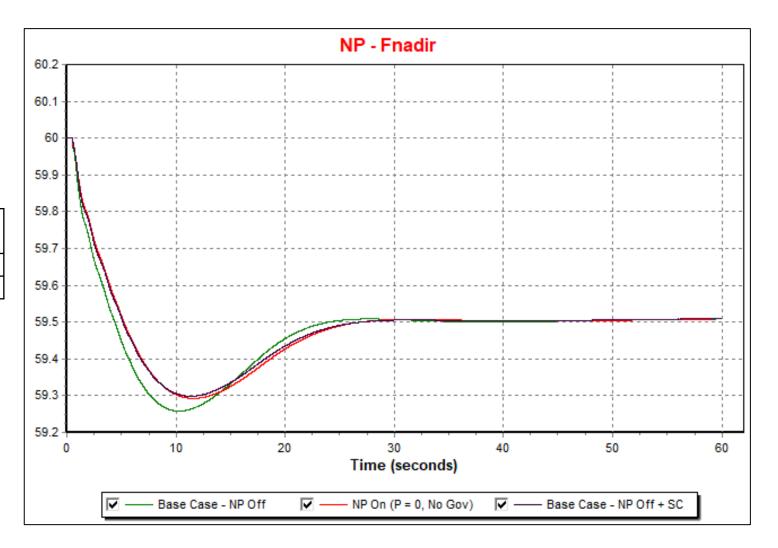
감사합니다. myoon@kw.ac.kr



GE 동기조상기 모델 파라메터 검증

• 동일 용량, 관성의 동기발전기와 외란 시 Pelec 특성 유사 확인

< (GENROU, Exciter) + SC 파라메터 >


<GE SC DYR>

GE 동기조상기 모델 관성 공급 능력 검증

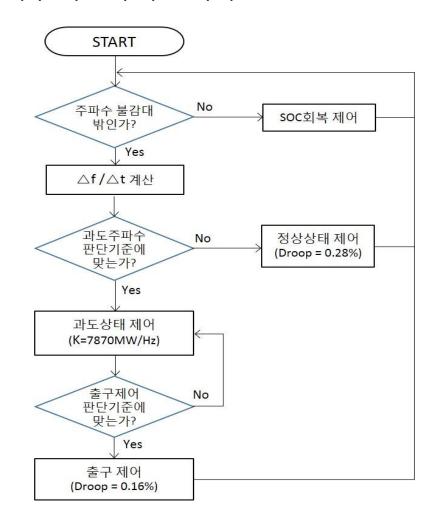
• 동일 용량, 관성의 동기발전기 케이스와 비교 시 주파수 특성 유사도 확인

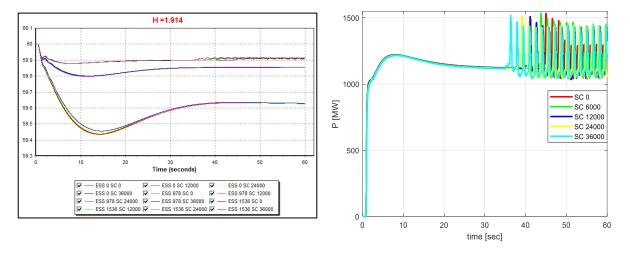
	NP Off	NP ON (P=0, No GOV)	NP OFF + SC
Н	169,812	214,235	214,396
Fnadir	59.258	59.293	59.299

동일 관성 = 동일 주파수 특성?

- 동일 관성에너지의 동기조상기 2개 조합 투입 후 최저주파수 비교
 - ✓ 높은 S, 낮은 H 케이스가 최저주파수 보상특성 우수
 - ✓ 계통의 조건에서도 동일 적용 -> 같은 관성이면 낮은 부하 조건이 최저주파수 불리

$$E_{k,sys} = S_{n,sys}H_{sys} = \sum_{i=1}^{N} S_{ni}H_i$$
 [MWs]


2121 a	탈락량[FSC 연계전	FSC (50MVA_	FSC (75MVA_6.7sec) 연계 후				
시나리오	MW]	최저 주파수	최저주파수	Δf	최저주파수	Δf		
1	150	59.13036	59.37744	0.24708	59.45298	0.32262		
2	150	59.06424	59.2563	0.19206	59.2725	0.20826		
3	150	59.6715	59.7822	0.1107	59.78424	0.11274		
4	47	59.83398	59.88348	0.0495	59.88318	0.0492		
5	30	NA	NA	-	NA	-		
6	70	59.78736	59.82222	0.03486	59.81562	0.02826		


Ref. 전력연구원 '재생E 수용성 증대기술 계통해석 모델링 기술 개발' 과제, 고려대 이병준 교수님 연구실

FR-ESS 동작 알고리즘

• 주파수 기준에 따른 제어 모드 변경

과도상태 종료시 속도조정률에 의한 정상상태 전환제어(출구제어모드)

- 조건: 계통 주파수가 59.9Hz 이상이며 1초 이상 상승상태를 유지하는 조건 두가지 모두 만족시
- ☞ 출구제어모드 운전시 주파수가 60Hz로 회복될 때 까지 지속됨. 이때 속도 조정률 0.16%로 정상상태 제어를 하며, 6분 경과시 정지함.

- DB 안정화 절차
- 원전 플랜트당 1기 Overhaul 고려 총 25.7 GW 세팅

Bus Num Bus Nam Id		Area Nun Area Nan	Zone Nun	Zone Nan	CVRIr	PGen (MV P	Max (MV P	Min (MW)	
25151 한울#1G	1	61 경북G	919	한울NP		1010	1010	791	1010
25152 한울#2G	1	61 경북G	919	한울NP		1012	1012	786	1012
25153 한울#3G	1	61 경북G	919	한울NP		1011	1011	795	1011
25154 한울#4G	1	61 경북G	919	한울NP		1051	1051	795	1051
25155 한울#5G	1	61 경북G	919	한울NP		1051	1051	795	1051
25156 한울#6G	1	61 경북G	919	한울NP		1055	1055	795	1055
25157 신한울#10	1	61 경북G	919	한울NP		1521	1521	1300	1521
25158 신한울#20	1	61 경북G	919	한울NP		1521	1521	1300	1521
25159 신한울#30	1	61 경북G	919	한울NP		1521	1521	1300	1521
25160 신한울#40	1	61 경북G	919	한울NP		1521	1521	1300	1521
27151 한빛#1G	1	60 전남G	913	한빛NP		1029	1029	758	1029
27152 한빛#2G	1	60 전남G	913	한빛NP		1030	1030	755	1030
27153 한빛#3G	1	60 전남G	913	한빛NP		1043	1043	750	1043
27154 한빛#4G	1	60 전남G	913	한빛NP		1015	1015	750	1015
27155 한빛#5G	1	60 전남G	913	한빛NP		1048	1048	718	1048
27156 한빛#6G	1	60 전남G	913	한빛NP		1051	1051	718	1051
28152 월성#2G	1	61 경북G	918	월성NP		683	683	615	683
28153 월성#3G	1	61 경북G	918	월성NP		688	688	612	688
28154 월성#4G	1	61 경북G	918	월성NP		676	676	612	676
28155 신월성#10	1	61 경북G	918	월성NP		1042	1042	900	1042
28156 신월성#20	1	61 경북G	918	월성NP		1052	1052	900	1052
29011 신고리#10	1	62 부산G	920	고리NP		1044	1044	900	1044
29012 신고리#20	1	62 부산G	920	고리NP		1045	1045	900	1045
29013 신고리#30	1	62 부산G	920	고리NP		1400	1400	1300	1400
29014 신고리#40	1	62 부산G	920	고리NP		1400	1400	1300	1400
29015 신고리#50	1	62 부산G	920	고리NP		1300	1521	1300	1300
29016 신고리#60	1	62 부산G	920	고리NP		1521	1521	1300	1521
29152 고리#2G	1	62 부산G	920	고리NP		682	682	415	682
29251 고리#3G	1	62 부산G	920	고리NP		1045	1045	795	1045
29252 고리#4G	1	62 부산G	920	고리NP		1044	1044	795	1044

• 2036년 춘계 주간 재생e 최대 , 80GW 부하, 3.04GW 탈락, 계통관성 173GVAs

✓ N-2

최저주파수

기존발전기 H 1.5	용도전환 H 5	신규 H 8	SC/ESS (GWs/MW)	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
13	4	2.5	20	59.14	59.19	59.24	59.31	59.36	59.38	59.43	59.48	59.52	59.56	59.58
27	8	5	40	59.16	59.21	59.26	59.29	59.35	59.40	59.44	59.49	59.54	59.57	59.59
40	12	7.5	60	59.18	59.23	59.28	59.33	59.37	59.41	59.46	59.50	59.53	59.56	59.60
53	16	10	80	59.19	59.24	59.29	59.34	59.39	59.42	59.47	59.51	59.55	59.58	59.61
67	20	12.5	100	59.21	59.26	59.30	59.35	59.40	59.43	59.49	59.53	59.56	59.59	59.61
80	24	15	120	59.21	59.27	59.30	59.35	59.40	59.44	59.50	59.52	59.56	59.59	59.62
93	28	17.5	140	59.22	59.25	59.32	59.36	59.41	59.45	59.51	59.53	59.57	59.60	59.63
107	32	20	160	59.23	59.28	59.33	59.37	59.42	59.46	59.52	59.53	59.58	59.61	59.64
120	36	22.5	180	59.25	59.30	59.34	59.39	59.43	59.47	59.52	59.54	59.58	59.61	59.64
133	40	25	200	59.26	59.31	59.35	59.40	59.44	59.48	59.54	59.54	59.59	59.62	59.65
147	44	27.5	220	59.27	59.32	59.36	59.42	59.45	59.48	59.55	59.57	59.60	59.63	59.66