저압 표준전압 유지범위 확대의 필요성 및 사회적 효과 분석

2024. 4. 26. (금)

곽 태 균

<u>목 차</u>

- 1. 배 경
- 2. 저압 표준전압 유지범위 일원화 필요성
- 3. 표준전압 유지범위 운영(안) 도출
- 4. 전기기기 및 내선설비 영향성
- 5. 사회적 수용성 검토
- 6. 결 론

1. 배 경

❖ 표준전압 유지범위 확대 필요성 검토 배경

배전선로 분산형 전원 연계용량 (상계거래 포함, `19.12.27 기준)

경 1. 배

❖ 분산형 전원 연계에 따른 배전계통의 전압관리 여유도

① 운영 margin 협소

- ③ DER 연계 제한

유지기준(법)	설계 margin
표준전압 유지범위	설비별 전압강하 한도
작을수록	클수록
클수록	작을수록

운영 margin					
전압제어 여유도					
 작아짐					
커짐					

- ✓ 협소한 표준전압 유지범위 기준 → 분산형전원 연계로 인한 전압문제 발생
 - → 전압기준 초과 우려시 **분산형전원 연계 제약** → **설비 신설 불가피(비용 증가)**

(설계기준: 변압기(2%), 저압선(6%), 인입선(2%))

現 법령 상 전기사업자의 통제 권한 없음.

경 1. 배

❖ 전기사업자 전기 품질 유지 관련 규정

전기사업법

제18조(전기품질의 유지)

- ① 전기사업자는 산업통상자원부령으로 정하는 바에 따라 그가 공급하는 전기의 품질을 유지하여야 한다.
- ② 전기사업자 및 한국전력거래소는 산업통상자원부령으로 정하는 바에 따라 전기 품질을 측정하고 그 결과를 기록 · 보존하여야 한다.

전기사업법 시행규칙

제18조(전기의 품질기준)

법 제18조 제1항에 따라 전기사업자는 그가 공급 하는 전기가 별표 3에 따른 표준전압·표준주파수 및 허용오차의 범위에서 유지되도록 하여야 한다.

별표3

표준전압 및 허용오차

표준전압

허용오차

110V볼트

110V볼트의 상하로 6볼트 이내

220V볼트 380V볼트

220V볼트의 상하로 13볼트 이내

380V볼트의 상하로 38볼트 이내

1. 배 경

❖ 국내 표준전압 유지범위 설정 배경

- '32년 조선총독이 정한 '조선전기사업령'으로 일본의 직접적 영향 받음
- 전기사업법('61년 제정), 동법 시행규칙('74년 제정)에서 일본 전기사업법에서 규정한 공급전압 유지 범위를 준용한 것으로 판단됨

공칭전압	일본	전기사업법 시행규칙				
00011	'43년	′74년	'91년	′97년~		
100V	101V±6V	101V±6V				
110V			110V±6V	110V±6V		
200V	202V±20V	202V±20V	200V±12V			
220V		222V±13V	220V±13V	220V±13V		
380V		385V±38V	380V±38V	380V±38V		

단상 ± 6 % 삼상 ± 10 %

제정시 ('74년),

☞ 일본 규정 준용

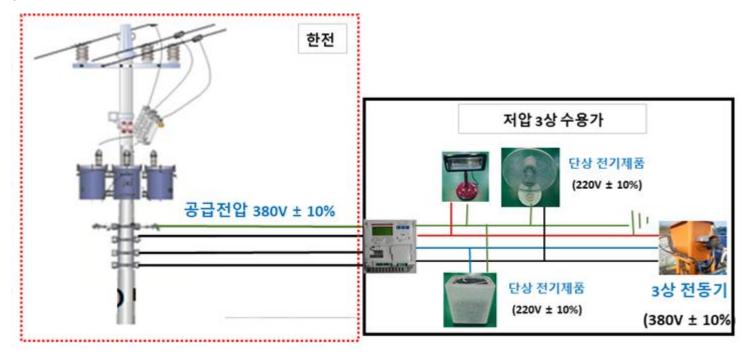
표준전압 변경/승압,

☞ 유지범위는 변경 X

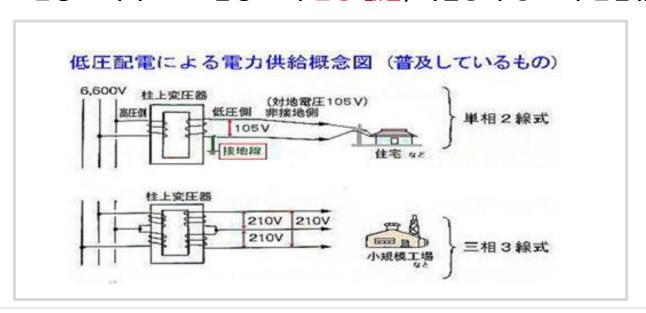
[불명확] 일본의 유지범위 기준, 준용 근거 부재

[부적정] 과거 백열등 고려한 유지범위 규정(±6%) / 국제표준(IEC, ±10%) 대비 협소

[불합리] 공용 공급방식 체계에서, 단상/삼상 유지범위 기준 상이 (±6%, ±10%)



❖ 우리나라와 일본의 배전 계통 공급방식의 차이


▮ 한국 (접지계통)

- 우리나라는 중성선 공용 접지 방식으로 삼상에도 상 전압과 선간 전압이 동시에 존재
- 이미 수십년 간 3상 수전 고객은 220V 단상과 380V 삼상 전기제품이 혼용되어 사용
- 즉, 동일계통에서 380V±10%와 220V±6% 관리에는 한계가 있음

- ❖ 우리나라와 일본의 배전 계통 공급방식의 차이
 - ▮일본 (비접지계통)
 - 단상(상 전압)과 삼상(선간 전압)의 구별 확실, 삼상 공급 시 선간 전압만 있음
 - 100V 단상 고객과 200V 삼상 고객 혼용 없음, 백열등 수명 고려 전압유지범위 선정

- ⇒ 한국과 일본의 배전 계통이 완전히 다름, <u>일본의 전압 허용범위를 준용하는 것은 적절치 않음</u>
- ⇒ 국내 백열등의 판매금지 기조에 따라 과거 <u>전압허용범위를 6%로 규정한 것에 대한 제고</u>필요

❖ KS 표준과 전기사업법 기준 이원화

분 류	표준	전압	사용전압	
국가표준	KS C 0501	220V±10% 380V±10%	각 전기사용 기기별 별도 요구	¹ 성능 및 시험기준
강제규정	전기사업법	220V± 6% 380V±10%	전기용품 및 생활 용품 안전관리법	IEC 준용(시험기준)

■ 표준전압과 사용 전압의 관계

○ 전기사용기기는 표준전압의 유지 범위 기준에 따라 적합하게 사용 가능해야 함 (기술표준원 고시 전기용품안전기준 및 운용 요령 제38조(안전기준의 적용))

우리나라의 전기사용기기 현황

- 수출 주도국인 점을 고려할 때, 전기사용기기 제조사는 실질적으로, 국내 사용환경과 유럽(국제표준) 사용환경 모두 만족시켜야 함
- 현재, 유럽의 공급 전압 환경(230V±10%)에서 사용상 지장 없음

❖국제표준(IEC) 부합화 추세 : IEC 60038(IEC Standard voltages)

- Edition 6.2(2020-07)
 - 220/380V, 240/415V 는 표준 공칭전압에서 제외
 - 220/380V, 240/415V 계통은, **2003년 이후에 230/400V±10% 로 운영 권장**
 - 단, 과도기간 동안 220/380V 계통은 230/400V 기준 -10%~+6%로, 240/415V 계통은 230/400V 기준 -6%~+10%로 운영
- Edition 7.0(2009-06)
 - 유럽을 포함한 많은 국가에서 220/380V, 240/415V 계통이 230/400V 로 전환하여 운영하게 되었음을 명시 (그러나, 여전히 사용중인 국가 있음)

Nominal voltage	19	8V	20	7V		23	3V	247	2V 2!	53V	264V
220/380V		-10%		-6%	+	6%		+10%			
230/400V				-10%	-6%			+6%	+10%		
240/415V					-10%	-	6%		+6%		+10%

(참고) 유럽권의 저압 표준전압 부합화 과정

■ **협의** CENELEC(유럽 전기 표준화 위원회) HD 472 S1:1989 제정 → 230/400V ±10%

■ 전개과정

- 영국, 이탈리아 등이 자국 규정을 조정하며 '95년 HD 472 S1:1989 승인
- 이후 CENELEC 회원국들이 자국 표준을 제·개정하며 공급전압 표준화 진행
- 영국 (240V±6% → 230V±10%)

Effective date	Nominal voltage	Permitted tolerance	Permitted voltage range
Pre-1995	240 V	-6 % / +6 %	225.6 – 254.4 V
1995.1	230 V	-6 % / +10 %	216.2 – 253.0 V
2010.4(proposed)	230 V	-10 % / +10 %	207.0 – 253.0 V

- 현재, 공칭전압은 230V, 정상조건 유지범위의 국가표준은 ±10%, 강제규정(ESQCR)은 -6%/+10%

■ 독일 / 이탈리아 (220V±6% → 230V±10%)

- 독 일: 220V±6% → ('87) 230V±10%(-10%/+6%) → ('03) 230V±10%
- 이탈리아 : 220/380V±6% → ('98) 230/400V±10%(-10%/+6%) → ('12) 230/400V±10%

(참고) 각국의 표준전압 유지범위 규정 현황 비교

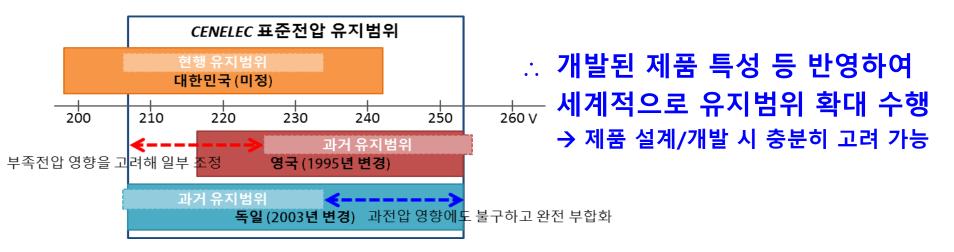
77	단상전원		유지범위(최소값/최대값			
국가	표준전압 (V)	국가법(강제규정)	국가표준(자율규정)	전력사 지침		
대한민국	220	- 6% / + 6%	- 10% / + 10%	- 10% / + 10%		
일본	100	- 6% / + 6%	없음	- 6% / + 6%		
중국	220	- 10% / +7%	- 10% / +7%	- 10% / + 7%		
호주	230	- 6% / + 10%	- 6% / + 10%	- 6% / + 10%		
독일	230	- 10% / + 10%	- 10% / + 10%	- 10% / + 10%		
영국	230	- 6% / + 10%	- 10% / + 10%	- 10% / + 10%		
이탈리아	230	- 10% / + 10%	- 10% / + 10%	- 10% / + 10%		
미국	120	- 5% / + 5%	- 5% / + 5%	- 5% / + 5%		
캐나다	120	- 8% / + 4%	- 8% / + 4%	- 8% / + 4%		

❖ 도출 방안

- 표준전압위원회 운영('17~'18, 정부 및 산·학·연 전문가 협의체 구성)
 - 능동적인 계통 운영을 위해 전압유지범위 개선 필요성 큼
 - 현재 수준에서 상한 4% 유지범위 확대 가능, -10%는 일부 조명기구 밝기에 지장

○ 해외사례 분석 : 유럽국가의 표준전압 IEC 부합화 과정 및 국내 적용 방안 등

○ 영향분석: 전기기기(전동기, 가정용 전기제품 등) 영향 및 내선설비 안전성 분석


○ 단기 및 중장기 저압 표준전압 체계 개선(안) 도출

❖ 유럽 국가의 표준전압 유지범위 변경과정

해외사례

- (유럽) CENELEC의 <u>표준전압 부합화</u> 작업 실시(HD 472 S1:**1989**)
- (영국) 부분적인 부합화 추진(1995) → 유지범위 하한 일부 확대
 - 전압강하 고려한 유지범위 하한 확대 제한 : <u>240V±6% → 230V+10/-6%</u>
- - 계통 및 기기에 심각한 영향 없는 것으로 판단하여 IEC 부합화 완료
 - 전압강하 통한 확대의 영향 완충 가능 : 220V±6% → 230V±10%

❖ 배전계통 환경 변화에 따른 저압 표준전압체계 국제표준 부합화

현재 국내·외 동향을 고려하여 저압 표준전압 범위 단계적 확대 추진

(과도기) 전압유지범위: 220V -6~+10%

- 단상/삼상 전압유지범위 단일화 + 국제표준(IEC) 부합화를 위한 과도기적 단계
- 표준전압 220V → 230V 변경으로 IEC부합화 추진 국가(독일/이탈리아) 사례 참고
- 정부 중심으로 230/400V로 표준전압 변경 검토 추진

Nominal voltage	198V 2	07V		233	V 24	2V 25	3V
220V	-10%	-6%		+6%	+10%		
230V		-10%	-6%		+6%	+10%	

(최종) 전압유지범위 : 230/400V ±10%

- 표준전압 및 전압유지범위 국제표준(IEC) 부합화
- 중장기적으로 사회적 비용 최소화

표준전압체계 재정립 로드맵

현재('23년)

(과도기) '24~'29

(최종) '30~

220V± 6% 380V±10%

기술적 근거 확보

220V -6% ~ +10% 380V ± 10%

사회적 합의, 사전 예고

230V±10% 400V±10%

국제표준 부합화

4. 전기기기 및 내선설비 영향성

❖ 전기기기 안전성 시험 결과

전기기기

* 시험규격 : KS C IEC 기준 및 관련법령

현행 유지범위	IEC 국제표준	개선(안)	전압대별 특이사항
+15% (253 V)	+10% (253 V)		- 전열기 온도상승 한계치 초과 - 전동기 효율감소
+10% (244 V)		+10% (244 V)	
+6% (233 V)	230V(공칭전압)		내전압·효율·수명 시험 결과
220V(공칭전압)		220V(공칭전압)	특이사항 없음
-6% (207 V)	-10% (207 V)	-6% (207 V)	
-10% (198 V)			- 일부 전동기 설계 변경
-15% (187 V)			- 등기구 광속 저하 - 일부 전동기 설계 변경

4. 전기기기 및 내선설비 영향성

❖ 내선설비 안전성 검토

내선설비

- 검토대상: 배선용 차단기, 누전차단기, 저압 퓨즈 등 보호장치 / 배선 및 접지 시스템
- 검토내용
 - 전압 변동이 차단기, 퓨즈 등의 보호장치 및 배선(전선 굵기 등)에 미치는 영향
 - 전압 변동이 접지시스템의 접촉 전압과 고장 전류에 미치는 영향
- 검토결과
 - 보호장치 설계·시험전압
 - 국가표준/국제표준 준수하여 정격전압 및 변동 고려하여 정격 이상으로 설계·시험
 - 전압 변동 영향 관련 보호장치 KS표준규격, 건축전기설비 설계 전문가 의견 수렴 결과
 - <u>보호기기에 미치는 영향</u> : <mark>없음</mark>
 - <u>전선(배선)에 미치는 영향</u> : <mark>없음</mark>
 - 접지시스템의 안전성에 미치는 영향 : 없음

5. 사회적 수용성 검토

수용 용량 예측

- ❖ 표준전압 유지범위 확대 전·후 최대 수용용량 산출 결과
 - 시뮬레이션 결과 <u>7.8 GW 증가</u>

전기사업자

- ❖ 표준전압 유지범위 확대 시 전기사업자의 투자/유지비용
 - 현재, 분산전원 연계 시 과전압 문제 해소를 위한 한전의 설비 투자/유지비용 증가
 - (확대 시) SVR 설치 / 선로 신설 비용 및 유지관리 비용 절감 효과

환경비용 영향

- ❖ 표준전압 유지범위 확대 시 환경비용 환산
 - 대체 에너지량 : 10,249 GWh/년
 - 탄소, 대기오염물질 등 총 환경비용 3,155억원/년 절감

6. 결 론

조건 : 전력품질 및 표준전압 크기는 현행 유지하며, 유지범위만 개선

○ 국내 실정 맞춤형 저압 표준전압 유지범위 개선에 대한 검토 결과

현	행	개선	개선(안)		
하한	상한	하한	상한		
220V -6%	220V +6%	220V -6%	220V +10%		

- 국제 표준 (230V±10%, 400V±10%) 부합화를 위한 **과도기**적 전압 체계 재정립
- 전기기기에 미치는 영향 결론
 - 안전(절연), 수명, 효율 등 성능 시험 결과 : 영향 없음.
- 내선설비에 미치는 영향 결론
 - 보호장치(차단기, 퓨즈 등), 전선굵기 및 접지 시스템 안전성 영향 없음.
- 사회적 수용성 검토
 - 분산형 전원 관련 계통보강 비용 감소, 신재생 증가에 따른 화력발전량 대체로 환경비용 저감

6. 결 론

❖ 기대효과

- 단상/삼상 전압유지범위 단일화로 일본 체계의 국내 적용에 따른 <u>부적정성 해소</u>
 - 일본 단상 유지범위 ±6% 적용 근거 부족 → 단상 및 삼상 유지범위 단일화 ±10%
- 단상 전압 유지범위 확대(6% → 10%)로 불필요한 설비 투자 회피
 - 전압강하에 따른 설비 보강 비용 절감으로 전기요금 인상요인 억제
- 분산전원 특별법 시행 시 분산전원 발전 제약 해소
 - 전력품질 유지(유지범위 초과 등)를 위한 분산전원 발전 강제 중지
- o 중장기적 국제표준 부합화로 전력계통 및 전기기기 대외 경쟁력 확보 및 수출용이
 - 수출주도국으로서 국가적 차원 효율성 제고

감사합니다!